

Decarbonization

Energy efficiency

Resource efficiency

Sources: WEF | IEA | Accenture

Covid

Conflict

Competition

Opportunities to improve operational effectiveness through smart data driven

Of data will be created & processed outside of centralized data centers by 2025¹⁾

Source Biobal AloT market by 2025 growing at 39% CAGR ²

What Edge Computing Means for Infrastructure and Operations Leaders - Gartner, 2018
Artificial Intelligence of Things by Technology & Solutions 2020-2025 - Research & Markets

Restricted | © Siemens 2023 | Thibault de Assi | September 2023

41.6 Billion loT Devices

in 2025

Source: IDC

Restricted | © Siemens 2023 | Thibault de Assi | September 2023

Addressing key industry challenges

Industry's challenges are multiplying – with new ones being added all the time

The automation pyramid becomes a network

How?

Let's transform the industry together

Thibault de Assi , General Manager, Siemens Digital Industries

Restricted | © Siemens 2023 | Thibault de Assi | September 2023

With a holistic approach and domain expertise

Siemens delivers customer value with end-to-end AI offerings: Integrated hardware, software, models & services

Industrial Edge in the context of Siemens Xcelerator – everything for resilient industrial operations

Industrial Edge

Live-Demonstration

Introducing Industrial Edge

An open software platform that makes shopfloor IT simple, scalable and manageable

²⁰²⁰ • 0:02 / 2:38

SIEMENS

:3

Artificial Intelligence – Achieving smarter and efficient production cross various application fields

Defect Prediction – Die Casting Process

Anomaly detection for die casting process to reduce costs

Anomaly detection of the process enables early prediction of product quality thereby reducing process costs associated with the defects

CUSTOMER PAIN(S)

- Metal casting process usually presents high defect rate (2-4%)
- Due to unknown process parameters and conditions anomaly cannot be easily identified or predicted
- Further processing of defected parts are extremely costly (70+% processing costs)

OUR APPROACH

- Identify key process parameters affecting the throughput of die casting machine
- Reduce process costs by detecting and thus ejecting defective parts out of the production process
- Build and deploy machine learning model on Edge to make real-time anomaly detection and defects prediction, feedback the result to PLC to prevent further production of defected parts

CUSTOMER VALUE

- Early state quality prediction to avoid further process costs of defected products by 30+%
- Optimize process and decrease defect rate by 40+%
- · Gain better visibility over process parameters and process anomalies

Example architecture to bring AI to the shopfloor with IPC/Edge

Process Optimization – Improving Beer Quality

Business Issue

 Provide holistic optimization of process parameters. based on thorough analysis of influencing factors at each step in a brewery.

- Inconsistency in the beer quality is mainly influenced due to change in process parameters
- Currently no clear indication or a recipe is available that guarantees best graded beer(grade 6.8) consistently.

OUR APPROACH

- Identify key process parameters influencing the beer quality.
- Al based solution is developed to predict parameters for achieving an optimized process.
- Observe the trend leading to 6.8 grade beer and correlate all the processes together to achieve this.
- Training and deployment is done on the edge system.

CUSTOMER VALUE

- Consistent quality in the beer increases the overall productivity.
- Reliable system to identify optimized parameter values for every process.
- Improved data source after combining process data with lab results for trend analysis .

Data driven approach for process optimization

Target				
Few data are available	Water consumption optimization	Refine energy consumption in wort cooling and maintain optimum temperature	Predict accidental conditions using the logistic data and generate a warning to avoid such incidents	identify influencing factors to achieve 6.8 grade of beer consistently
Malt batch per silo Mill Gap	Quantity/Temperatures Hop additives Average brew pH values Alarms CaCl2 quantity Water flow/Temperature	Yeast Type Yeast Generation Dosing Data Number of brews Silica gel quantity	Packaging units Machine performance Quality Energy	Q-Score Clinical lab test report Quantitative taste report.
Raw material	Brewing	Fermentation	Packaging	Quality Check
Few data being tracked	Water (influences beer quality), no clear mapping in place	Energy efficiency	Transportation (bottles fall from the pallets); Machine performance and folding quality	Recipe does not guaranty 6.8 quality grade
Challenges				

SIEMENS

Restricted | © Siemens 2023 | Thibault de Assi | September 2023

Production Critical Level

Visual Inspection of Printed Layers in Jet Binder Additive Manufacturing

3D printing

Business Issue

- Detection of defects post printing is costly in terms of time and labor
- Late detection leads to waste of time and material used for 3D printing.
- Corrective actions need to be taken during print job.

TECHNICAL CHALLENGES

- The defect are very small and could lead to complete design failure.
- There is specific description to the defects and linked to their occurrences, only 3D printing expert can identify and localize the defects.
- No external camera is available, the line scan camera attached with the scanner is only option.

DEPLOYMENT SOLUTION

- Classical machine learning algorithms approach to identify the anomaly is deployed.
- We are able to classify and model the different kind of defects combining the ML approach with Image Processing solutions on IPC427E type.

BUSINESS VALUE

- Reduced downtime and scrap rate
- Early defect detection saved the cost, material and effort in 3D printing.
- Saved the time of experts in localizing small defects.

2,500 Average number of layers per job

30 hours

Average Printing Time for all layers

2.5 hours/day

Reduced time and rework.

Production Critical Level

Restricted | © Siemens 2023 | Thibault de Assi | September 2023

Nank you

